Statistical Models for Tracking and Detection
نویسندگان
چکیده
We explore the behavior of two different statistical models, one based on the beta-binomial distribution and another based on simple unigrams. We show that tracking systems based on these models have complementary strengths and weaknesses: the Beta-Binomial system yields high precision at high decision threshold, but performance quickly degrades as the threshold drops; the Unigram system is not as strong at high decision threshold, but is very good at suppressing false-alarms at lower threshold. We will describe the features of these systems that give rise to this behavior, and discuss ways that each system might be improved by borrowing from the other. We will also discuss our detection system, and how improvements in tracking can be carried over to improvements in detection. 1. OVERVIEW AND APPROACH The focus of our TDT research [1, 2, 3, 4, 5, 6, 7, 8] is the problem of modeling topical content, and our approach is to design, for a given topic, a statistical model of story generation within that topic. Such a model can be used to evaluate the probability that a test story is on the given topic.
منابع مشابه
Moving Objects Tracking Using Statistical Models
Object detection plays an important role in successfulness of a wide range of applications that involve images as input data. In this paper we have presented a new approach for background modeling by nonconsecutive frames differencing. Direction and velocity of moving objects have been extracted in order to get an appropriate sequence of frames to perform frame subtraction. Stationary parts of ...
متن کاملMoving Objects Tracking Using Statistical Models
Object detection plays an important role in successfulness of a wide range of applications that involve images as input data. In this paper we have presented a new approach for background modeling by nonconsecutive frames differencing. Direction and velocity of moving objects have been extracted in order to get an appropriate sequence of frames to perform frame subtraction. Stationary parts of ...
متن کاملOnline multiple people tracking-by-detection in crowded scenes
Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...
متن کاملTracking Interval for Doubly Censored Data with Application of Plasma Droplet Spread Samples
Doubly censoring scheme, which includes left as well as right censored observations, is frequently observed in practical studies. In this paper we introduce a new interval say tracking interval for comparing the two rival models when the data are doubly censored. We obtain the asymptotic properties of maximum likelihood estimator under doubly censored data and drive a statistic for testing the ...
متن کاملTracking Interval for Type II Hybrid Censoring Scheme
The purpose of this paper is to obtain the tracking interval for difference of expected Kullback-Leibler risks of two models under Type II hybrid censoring scheme. This interval helps us to evaluate proposed models in comparison with each other. We drive a statistic which tracks the difference of expected Kullback–Leibler risks between maximum likelihood estimators of the distribution in two diff...
متن کاملModel Selection Based on Tracking Interval Under Unified Hybrid Censored Samples
The aim of statistical modeling is to identify the model that most closely approximates the underlying process. Akaike information criterion (AIC) is commonly used for model selection but the precise value of AIC has no direct interpretation. In this paper we use a normalization of a difference of Akaike criteria in comparing between the two rival models under unified hybrid cens...
متن کامل